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Abstract

There have been active efforts in the U.S., Europe, and Japan on the design of a Neutrino

Factory. This type of facility produces intense beams of neutrinos from the decay of muons in a

high energy storage ring. In the U.S., a second detailed Feasibility Study (FS2) for a Neutrino

Factory was completed in 2001. Since that report was published, new ideas in bunching, cooling

and acceleration of muon beams have been developed. We have incorporated these ideas into a

new facility design, which we designate as Study 2B (ST2B), that should lead to significant cost

savings over the FS2 design.
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I. INTRODUCTION

A Neutrino Factory [1, 2, 3, 4] facility offers an exciting option for the long-term neu-

trino physics program. In the U.S. there has been a significant investment in developing

the concepts and technologies required for such an accelerator complex. New accelerator

technologies offer the possibility of building, in the not-too-distant future, an accelerator

complex to produce more than 1020 muons per year [3]. It has been proposed to build a

Neutrino Factory by accelerating the muons from this intense source to energies of tens of

GeV, injecting them into a storage ring having long straight sections, and exploiting the

intense neutrino beams that are produced by muons decaying in the straight sections. The

decays

µ−
→ e−νµν̄e , µ+

→ e+ν̄µνe (1)

yield neutrinos that are directed along the line of the straight sections. This allows them to

be observed at near and far detectors, and offers exciting possibilities to pursue the study

of neutrino oscillations and neutrino interactions with exquisite precision.

A Neutrino Factory requires an intense multi-GeV proton source capable of producing

a primary proton beam with a beam power of 1–4 MW or more on target. This is the

same proton source required in the medium term for Neutrino Superbeams; hence, there is

a natural evolution from Superbeam experiments to Neutrino Factory experiments.

The physics case for a Neutrino Factory will depend upon results from the next round of

planned neutrino oscillation experiments [5]. If the unknown mixing angle θ13 is small, such

that sin2 2θ13 < O(10−2), or if there is a surprise and three-flavor mixing does not completely

describe the observed phenomenology, then answers to some or all of the most important

neutrino oscillation questions will require a Neutrino Factory. If sin2 2θ13 is large, just below

the present upper limit, and if there are no experimental surprises, the physics case for a

Neutrino Factory will depend on the values of the oscillation parameters, the achievable

sensitivity that will be demonstrated by the first generation of νe appearance experiments,

and the nature of the second generation of basic physics questions that will emerge from

the first round of results. In either case (large or small θ13), in about a decade the neutrino

community may need to insert a Neutrino Factory into the global neutrino plan. The option

to do this in the next 10 years will depend upon the accelerator R&D that is done during

the intervening period.
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In the U.S., the Neutrino Factory and Muon Collider Collaboration (referred to herein

as the NFMCC [6]) is a collaboration of 130 scientists and engineers engaged in carrying

out the accelerator R&D that is needed before a Neutrino Factory could be inserted into

the global plan. Much technical progress has been made over the last few years, and several

of the required key accelerator experiments are now approved. In addition to the U.S.

effort, there are active Neutrino Factory R&D groups in Europe [7, 8] and Japan [9], and

much of the R&D is performed and organized as an international endeavor. Thus, because a

Neutrino Factory is potentially the key facility for the long-term neutrino program, Neutrino

Factory R&D is an important part of the present global neutrino program. The key R&D

experiments are seeking funding now, and will need to be supported if Neutrino Factories

are to be an option for the future.

In this article we describe an updated Neutrino Factory design that demonstrates sig-

nificant progress toward performance improvements and cost reduction for this ambitious

facility. The paper is organized as follows. Section II describes the Neutrino Factory de-

sign concept. The design of the front end of the facility is described in Section III and

the accelerator chain is described in Section IV. In Section V we discuss the storage ring

and the overall performance. Required R&D is described in Section VI. In Section VII we

discuss the assumptions used to make the cost estimate for a Neutrino Factory and finally,

we conclude with a summary in Section VIII.

Much of the work described in this paper was performed as part of the year-long Study

of the Physics of Neutrinos, organized by the American Physical Society [5].

II. MACHINE CONCEPT

In this Section we describe the basic machine concepts that are used to create a Neutrino

Factory facility [1, 5, 10]; a schematic of the whole facility is shown in Fig. 1. The facility

is a quaternary beam machine; that is, a primary proton beam is used to create first a

secondary pion beam and subsequently, a tertiary muon beam that decays and eventually

provides the neutrino flux for the detector. For a Neutrino Factory the primary beam is a

high intensity proton beam of moderate energy (beams of 2–50 GeV have been considered

by various groups) that impinges on a target, typically a high-Z material (e.g., Hg). The

collisions between the proton beam and the target nuclei produce a secondary pion beam
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TABLE I: Summary of the main parameters

Proton energy (GeV) 24

Driver cycle rate (Hz) 2.5

Bunches per spill 6

Average bunch rate (Hz) 2.5 × 6 = 15

Protons per bunch (1012) 1.6

Bunch length, rms (ns) 3

Proton power (MW) 1

Final muon energy (GeV) 20

Muons of each sign per proton after cooling 0.17

Muons of each sign per proton after acceleration 0.11

Muons of both signs per 107 sec decaying toward detector 2 × 1020

that quickly decays (26.0 ns) into a longer-lived (2.2 µs) muon beam. The remainder of the

Neutrino Factory is used to condition the muon beam (see Section III), accelerate it rapidly

to the desired final energy of a few tens of GeV (see Section IV), and store it in a decay ring

having a long straight section oriented such that decay neutrinos produced there will hit a

detector located thousands of kilometers from the source.

Two Feasibility Studies [1, 10] have demonstrated technical feasibility (provided the chal-

lenging component specifications are met), established a cost baseline, and established the

expected range of physics performance. Our present concept of a Neutrino Factory is based

in part on the most recent Feasibility Study (Study-II, referred to herein as FS2) [1] that

was carried out jointly by BNL and the U.S. NFMCC. It is worth noting that the Neutrino

Factory design we envision could fit comfortably on the site of an existing laboratory, such

as BNL or FNAL. Figure 1 shows a schematic of the facility. A summary of parameters is

given in Table I.

The main ingredients of a Neutrino Factory include:

• Proton Driver: 1–4 MW (1 MW in this article, but possibly upgradeable to 4 MW)

of protons on target from, for example, an upgraded AGS; a new booster at Fermilab

(or elsewhere) would perform equivalently.
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FIG. 1: (Color) Schematic of a Neutrino Factory Facility.

• Target and Capture: A high-power target is immersed in a 20 T superconducting

solenoidal field to capture pions produced in proton-nucleus interactions. The high

magnetic field at the target is smoothly tapered down to a much lower value, 1.75 T,

which is then maintained through the bunching and phase rotation sections of the

Neutrino Factory.

• Bunching and Phase Rotation: We first accomplish the bunching with rf cavities

of modest gradient, whose frequencies change as we proceed down the beam line. After

bunching the beam, another set of rf cavities, with higher gradients and again having

decreasing frequencies as we proceed down the beam line, is used to rotate the beam

in longitudinal phase space to reduce its energy spread.

• Cooling: A solenoidal focusing channel, with high-gradient 201.25 MHz rf cavities

and LiH absorbers, cools the transverse normalized rms emittance from 17 mm·rad to
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about 7 mm·rad. This takes place at a central muon momentum of 220 MeV/c.

• Acceleration: A superconducting linac with solenoidal focusing is used to raise the

muon beam energy to 1.5 GeV, followed by a Recirculating Linear Accelerator (RLA),

arranged in a dogbone geometry, to provide a 5 GeV muon beam. Thereafter, a pair

of cascaded Fixed-Field, Alternating Gradient (FFAG) rings, with a triplet lattice of

combined-function magnets, is used to reach 20 GeV. Additional FFAG stages could

be added to reach a higher beam energy, if the physics requires this.

• Storage Ring: We employ a compact racetrack-shaped superconducting storage ring

in which ≈ 35% of the stored muons decay while traveling toward detectors located

nearby, and some 3000 km from the ring. Muons survive for roughly 500 turns.

In the remainder of this paper we describe in detail the new design of the Neutrino

Factory front-end for performing the required beam manipulations prior to acceleration and

describe our new ideas for accelerating the muon beam using FFAGs.

III. FRONT END DESIGN

Some front end parameters are given in Table II. The front end of the neutrino factory

(the part of the facility between the target and the first linear accelerator) represented a

large fraction, about 40 %, of the total facility costs in FS2 [1]. However, several recent

developments have led to a new design for the front end that has a crucial performance

advantage and is also significantly less expensive. The new concepts are:

• A new approach to bunching and phase rotation using the concept of adiabatic rf

bunching [11, 12, 13, 14] eliminates the very expensive induction linacs used in FS2.

• For a moderate cost, the transverse acceptance of the accelerator chain is doubled

from its FS2 value.

• The increased accelerator acceptance diminishes the demands on the transverse ioniza-

tion cooling and allows the design of a simplified cooling section with fewer components

and reduced magnetic field strength.
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TABLE II: Summary of the front-end parameters

Solenoid capture magnetic field (T) 20

Length of taper (m) 12

Solenoid field at end of taper (T) 1.75

Length of drift (m) 99

Solenoid field in drift (T) 1.75

Length of buncher (m) 50

Solenoid field in buncher (T) 1.75

Maximum rf gradient in buncher (MV/m) 10

Length of phase rotator (m) 54

Solenoid field in phase rotator (T) 1.75

RF gradient in phase rotator (MV/m) 12.5

Length of cooler (m) 80

Maximum solenoid field in cooler (T) 3

RF gradient in cooler (MV/m) 15.25

We denote as Study 2B (ST2B) the simulations that have been made of the performance

of this new front end, together with the new scheme for acceleration. The Monte Carlo

simulations were performed with the code ICOOL [15]. The concept of the adiabatic buncher

is compared with the system used in FS2 in Fig. 2. The longitudinal phase space after the

target is the same in both cases. Initially, there is a small spread in time, but a very large

spread in energy. The target is followed by a drift space in both cases, where a strong

correlation develops between time and energy. Figure 3 shows the longitudinal phase space

after the long drift. In FS2 the energy spread in the correlated beam was first flattened

(phase rotated) using a series of induction linacs. The induction linacs did an excellent job,

reducing the final rms energy spread to 4.4%, but were expensive. The beam was then sent

through a series of rf cavities for bunching, which increased the energy spread to ≈ 8%.

In the new scheme, the correlated beam is first adiabatically bunched using a series

of rf cavities with decreasing frequencies and increasing gradients in such a way that the

bunch centers remain at the rf zero crossings, even as their spacing increases because of their

differing energies and velocities. The buncher was designed by picking two reference particles
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Study2 (FS2) with Induction Linacs

ct
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FIG. 2: (Color) Comparison of the buncher concept used here (bottom) with the bunching system

used in FS2 (top).
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FIG. 3: (Color) Longitudinal phase space after the drift section.

with different momenta (e.g. 155 and 280 MeV/c) in the phase space distribution shown in

Fig. 3. These two reference particles were defined to be a large integer number (e.g. 18)
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of rf wavelengths apart. Because of their velocity difference the reference particles became

more separated in time as they proceeded to fixed locations in the buncher region. Since by

construction the time difference always corresponds to a fixed number of wavelengths, the

rf periods became longer and the corresponding rf frequencies fell as a function of distance

along the channel.

The beam is then phase rotated with a second string of rf cavities with decreasing frequen-

cies and constant gradient. In this case the frequencies are chosen with a slightly different

criterion than that in the bunching. They are chosen so that the high energy bunch centers

see a decelerating rf field, while the low energy particles see an accelerating field. The final

rms energy spread in the new design is 10.5%. This spread is acceptable for the new cooling

channel. The overall layout of the new front-end design is shown schematically in Fig. 4.

0

drifttarget buncher cooling

m

rf rotator

12 111 162 216 295

FIG. 4: (Color) Overall layout of the front-end.

The first 12 m is used to capture pions produced in the target. The field here drops

adiabatically from 20 T over the target to 1.75 T. At the same time, the radius of the beam

pipe increases from 7.5 cm at the target up to 25 cm. Next comes 99 m for the pions to

decay into muons and for the energy-time correlation to develop. The adiabatic bunching

occupies the next 50 m and the phase rotation and matching take place in 54 m following

that. Lastly, the channel has 80 m of ionization cooling. The total length of the new front

end is 295 m. The longitudinal component of the magnetic field on-axis is shown for the full

front-end in Fig. 5. The field falls very rapidly in the collection region to a value of 1.75 T.

It keeps this value with very little ripple over the decay, buncher and rotator regions. After

a short matching section, the 1.75 T field is changed to the alternating field used in the

cooling section.
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FIG. 5: Longitudinal field component Bz on-axis along the ST2B front-end.

A. Target and Decay Region

The beam distributions used in the simulations were generated using MARS [16]. The

distribution was calculated for a 24 GeV proton beam interacting with a Hg jet [17]. The jet

was incident at an angle of 100 mrad to the solenoid axis, whereas the beam was incident at

an angle of 67 mrad to the solenoid axis. An independent study showed that the resulting

33 mrad crossing angle gives near-peak acceptance for the produced pions. An examination

of the distribution of particles that were propagated to the end of the capture region showed

that they have a peak initial longitudinal momentum of ≈ 300 MeV/c with a long high-

energy tail, and a peak initial transverse momentum ≈ 180 MeV/c.

We used an improved axial field profile in the capture region that increased the final

number of muons per proton in the accelerator acceptance by ≈ 10%. The new axial field

profile (marked ST2B) is compared in Fig. 6 with the profile used in FS2. Figure 7 shows

the actual coil configuration in the collection region. The end of the 60 cm long target region

is defined as z = 0. The three small-radius coils near z = 0 are Cu coils, while the others

are superconducting. The left axis shows the error field on-axis compared with the desired

field profile. We see that the maximum error field is ≈ 0.07 T.
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FIG. 6: (Color) Comparison of the capture region magnetic field used in the present simulation

(ST2B) with that used in FS2.
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FIG. 7: (Color) Actual coil configuration in the collection region. The left axis shows the error

field on-axis compared with the optimal capture field profile, denoted ST2B in Fig. 6.

Figure 8 shows a MARS calculation of the absorbed radiation dose in the collection

region. The peak energy deposition dose in the superconducting coils, as illustrated in

Fig. 8, is ≈ 0.5 × 10−8 GeV/g per proton on target. This dose is ≈ 1 MGy/yr for a 1 MW
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beam running for a Snowmass year of 1× 107 s. Assuming a lifetime dose for the insulation

of 100 MGy, there should be no problem with radiation damage in the coils, even at a 4 MW

intensity level.

0 10 20 30 40 50
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FIG. 8: (Color) MARS calculation of the absorbed annual radiation dose in the collection region

for a 1 MW proton beam. The scale shown is in units of GeV/g per proton on target.

B. Bunching and Phase Rotation Region

A cell of the buncher lattice is shown schematically in Fig. 9. Most of the cell length is

occupied by the 50 cm long rf cavities. The cavity iris is covered with a Be window. The

window thicknesses varied from 200 to 395 microns, depending on the cavity gradient. The

limiting radial aperture in the cell is determined by the 25 cm radius of the window. The

50 cm long solenoids were placed outside the rf cavity with periodicity of 75 cm, in order to

decrease the magnetic field ripple on the axis and minimize beam losses from momentum stop

bands. The buncher section contains 27 cavities with 13 discrete frequencies and gradients

12



varying from 5–10 MV/m.

The frequencies decrease from 333 to 234 MHz in the buncher region. The cavities are not

equally spaced. Fewer cavities are used at the beginning where the required gradients are

small. Figure 10 shows the correlated longitudinal phase space and the bunching produced

by the buncher.
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FIG. 9: (Color) Schematic of a cell at the beginning of the phase rotator section.
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FIG. 10: (Color) Longitudinal phase space of one sign muons after the buncher section.

The phase rotator cell is very similar to the buncher cell. The major difference is the

use of tapered Be windows on the cavities because of the higher rf gradient. The tapered

window had a thickness of 750 micron from the axis out to a radius of 20 cm and a thickness

13



of 1.5 mm from 20 to 25 cm. There are 72 cavities in the rotator region, with 15 different

frequencies. The frequencies decrease from 232 to 201 MHz in this part of the front end. All

cavities have a gradient of 12.5 MV/m. Figure 11 shows the longitudinal phase space after

the phase rotator. The rms energy spread in the beam is reduced to 27 MeV. To study the

effect of a shorter phase rotator, we also considered an example having only a 26 m phase

rotation section [18]. This alternative design would be significantly less expensive, since it is

not only shorter but requires about 200 MV less high-gradient rf voltage. Initial evaluations

indicate a small decrease in captured muons (≈10%).

Momentum
(GeV/)

t (m)-50 0 50 1000.0
0.2
0.4
0.6

�
� ��

�

�
q

��

q
��

� �
��

q
�

�
�

� �
q

� �
q

��

�

�
q�

�

�

�� �
�

�
q

�
�� �

�
� ���� �

q�

��
���

�
� ��

�
q

��
q

��
�

�� �� ��� � ��
���

�
�

�

���
q

�
�

�
q

�

q

�
q

�
q

�

q

��� � ��
�

q
�

q� �� �

�
�

��� �
q

�

q

��
q

�
q

�
q

�
q�

���
q

��
�

�

�

�

� �

q

�
q

�
q�

�
� ���

�

� � ��
q

�
q

� �
q

� �
q

�
q

�
q

� �
q

�
q

�

q

� ��
q

�
q

���
q

�

�

�
q

�
q� �

�
��

�
��

�

q

�

�
�

q

� �

q�
��

�

�
�

��
q

�
�

�
q�

��
�

�

�
�

� ��
q

�

� ���
q

�

�
��

�
��

q

�
q��

���
q

� �
q

�
q

�

�

��
q

��� � ��
��

� ��

q
�

q

�
q

�
q

��
q

�
q

�
q

�
q

��
q

�
q

� �
��

�
q�

�

�

� �
q

� �
q�

�

�
�

��

�
q

� �

q
��

�
�

q
�

q
�� �� �

�
� � �� �

�

�
q

�
q

��
�

�

�

�� �
�

�

q�
��

q�
�

� �
q

�
�

��

�
�

�
q

� �

q

�

q

�
q

�

��
q

�
q

�
q�

�
q

�
�

�
q

�� �
�

��

�
q

� �
q

� �

� �

�
q

�
q

�
q

�
q

�

q

� � �
�

� � �� �
q

�

��
q

��
���

�

q

�
�

�

�
� �

q
�

��
q�

�� �

q
� � �

�

�� � �� �� �
q

�
q�

�
�
� �

q�
q

� �� �
�

��
q

�
q

�
q

�
q�

��

q� �

��
q

�

q��
��

q�

� �
q

�

�

�
� � ���

�
��� �

q�
�

���

q

�
q

�

q
� �

�

�� �
q�

��

�

��
�

q
�

�
q

�

�
�

�
q

��� �
q

�
�

� �� �
q

�

�
q

�
q

�
�

�
q

� �

�

�
q

�
q

� ��

q
�� �

q
� ��� �

q
�� �

q

� �� � �� �
�

�
q

� ��

�

� ���

��

�
�
�

�
�

q
�

q
�

q

��

�

�
q

�
�

��
q

� ���
q

�
q��

�

��

�
�
� �

q
�

q

� �� �
�

�

� �
�
� �

�

� �
� �

q
� �

q
��

q
�

�
q

� �
�

��
q

�
q

�
q

�

�

�

� �

q�
� ���

q
���

�

��
q

�
�

�

�
q�

�

���
q

�
�

�
q

���
q

�
�� �

q�
q

��
�

�� �
�

�

�
q

��
�

�
�

� �� ��
��

q

��
q

�
q

�

q

��

q

� ��

q
�

q

�� �

�
�

�
q

� � �

�

�
q

�

q

� �

q�

�
q

� �
q�

�
q

� �
q

�
q

� �

q

�

q

��

q�
�

�
�

q

�
q� �

q
�

�
q

�
q

��

q

�
q�

�
q

� �

q
� �

q�
�

q
� �

�
�

� ��� �
q

�� �
� �

��
q

�
�

�
�

q��
�

��

�

�
q

�
q

�
q

�
q

� ���
q

�
q

�
�

q

��
q�

�
q��

q
�

q
�
� �

q�
�

q

� �
q

�� �� �

�
���

��
�
��

�� �
��

q
�

�
�

� � �

�

�
q

�
q

�
q

�

q

���
� � �
��

�� �

q

�
q

�

��
��

�� ��
q

�� �
q

�
q

�
q

�
�

����

q

� �
q

�

�
q

��
q

�� �
q

���

�

� ��
q

�

��
�

�

q

�
q

� � �
q

���

q

�
�

���
�

�
�

q
�� � ��

q
�

q� �
��

q
�

q

�

q

��

q�
� ��

q
�

q

�
q�

��
q

�
q

�
q

�
q

�
q

���
q

��
q�

�
q

�

�

� �
�

��
�

� �� �
��

�

�

�
q

� �

q

�

q

�

q

�
���

�

q

�

�
�

�

�� �
q

��
q

�
q�

� �
q�

�

�

��
q

�
�

�
�

�
q

��

q

�
�
�

� �
q�

�
�

� ��
q�

� ��
q

�
q

��
q�

�
�

��

q

��

�

��
q

�
q

� �
q

� �
�

��

�

�

�

�
q

�

��

�
�

�
�

�
q�

�
q�

���
� � �

q

� ��
q

�

� ��
q�

�� �
��

�
�

q

��� �
q

�

��
q
���

�
��

q�

�
q

���
q

� ��
q

�
q�

� ��
q

� �

�

�
q

�
q

�
�
�� �

�
�� �

�

�
q

�
q�

� ��� �
q

��
q

�
q

��
q

�
q

� ��
q

�� �
�

�
q

�

q

�
���

�
q� �

q�

�
q

��
�

�
q

��
��

��� ��
�

�
��

�
q

� �

q

�
q

�

q
�

�
� �

�
���

q�
�

�
q

��
q

�

q

� ��
q

��
q

��
q

��
q

�� ��
q

�� �

�

�

q

�

q

� ��
q

� �
���

�
�

q
� �

q
�

q

�
��

� �
q�

��
q

��
�

�
q

� ��
q

�
q�

�
��

�
q

�

�

�
q

�
�

�
��
�

�

��
q

� � �
��

� ��
��

�� �
��

�
q

�
�� �

�
�

�

��
� ��

q
�

q�
�

� � �

�

� �
�

�� ��
�

q�
� ��

�

� �
q

��
���

� � �� �
q

� �
q

���
q

�� �

q�

�

�
��� �

�

� �� �� �

�

��
q

�
q

�� � �� �
q

�
q

�
q

�
� �

q
� �

q
��

��
� �

q
�� ��

�

�

�

�

�
�

�

�� �
�

�
q

�
�

�
q

� ��

q
�

�
�� �

q

�
q

�
q

�

�� � �
�

�
q

� �
q�

�
�

�
� ��

q�
�
�

�
�
� �

q
� �

q
�

q
�

q
�

q

�� �
q

��

q
�
��

�� �
q

�
q�

�

�
�

�

�

q�

��� �
q

� ��

�

�

q

�
q

�
q

�
�

�

�

�

q

� ��
�

�
�

��� � ���� �� ��� ��

��

�
�

�
q

�

q

�
q

�

�

�
q�

��
�

q
��

q

�
q

�
�

��� �� �
q

�
� � �

q
�

�
� ��

�

�

�
�

��
q

��
q

�
�

q
� �

q
�

�

�
�

� �
� � ���

q��
�

��
�

�

�
q

�

q

� �
q

�

q�

�

�
�

�
�

�

q
�

�

�
�� �

q
��
�

�

�
q� � ��� �

q

� �� ��
��

�
q

� �

�

�
q

�
�

�
q�

�
q�

�
q

��� � ��� � ��
q

�

��
��

�

��
� �

q
� ��

q

�

�
�
�

��

�
�

��

�

�
q

� � ��
�

� �
q�

���
���

�
�

�

�
q

��
��

� �� �
q

�� �
q

� ��
�

� �
q

��
�

�� ��

q�

���
q�

�
�

�
�

�
q�

�

�
q

�
��

� �
q

�
q

���
�

�� �
q

� �� �
q�

�

�

�
q

�
�

�
q� �

�
q

�
�� �� �

q
�

�
�

q

��� ��
��

�
q

��
q

��
q

�
q

�� �
q

� �� �
�

�
q

�
q

�
�

� � �
� �

�
q

��

q

�
q� �

� ��
q

�

�

�
q

� �� �
q�

�

�

�

�

�
�

��
q�

� �
q

�
q� �

�� �

q
��

���
q

�

q

�
q��

�
��

q
�

���
��

�

�
� � ��
�

��
�

q
� ��

�
�� � ��

q
���� �

�

�

�

� � �
�

�
�

�
q�

�

�

q

�
q

��

�

�
��

��
�

��

q� �

� �
�

�

�
�

�
q

�
q

�� �
��
�

�� �
q

�
�

�
�� �

q
�

�
q�

��
q

�
�

��
�

q���
���

� �

q

��

q
�

�

�

�

�
q

��
��

���
��
�
��

�

� �

�

�
q

�

q
�
�
�

��

q
� � �

q
� ��

q

�
q

�
q

�
q� �

�

� ��� ���
q

�
q

� ��

q

��� �
q

�

� � �� �

�

��
� �
�

�

q

�
q

�
�

�
q

�
q�

�
�

q

�
�

�

q

���
q

�
� � �

��
q

��
q

���� ��
q

�

�

�
q

�

� �
� ��

�
q

�
q

��
q

�� �
q

�� �

� �

�
q

�
q

���
q

� �
q

�

�

�
q

�
�

��
q�

��
�

�
q��

�
�

� �� �� �
q

�
�

��
�

�

q

�
�� �

q�
�

�
�

��
�

��
q�

� � �
� � �

q

�
q

��

�

� �
�

���
�

�
q

�

q

�
q

�
q

��
�

�
q

�
�� � �

q

� �

q
�

� �
q

�
�
�

��
��

� �

q
�

��

�
q

�
�� �

�
��

q�

�� �
q

�
q�

�
q

� ��
q

�
��
� ��� ���
�

� ��� �
q

�
q

� �� ��

q

�
q�

�
q

����

��

�
�

��
q

�
q

�

��

�

�

�

�

q

� ��
q

�
� ��� �

q�� �

q
�

�
� � ���

�
� ���

�

�
�

�� �
q

�
q

� ��
q

��
q

�
q

�
�

�

�

�
�

q
�

q
�

�
�

�

�

�
�

�

��
q

�� �
q

�� �
q

�

q
�

�
q

����� �

�
� ��

q
�

�
�

�

� �

�
� �

�� �
�

� ��

q

�
�
�
�

� �
�
�

�
q

��
q

� ��
q

��
�

�
q�

� � �� �
q

�
q

� �

q�
�

q
� ��

q
�

q
�

��� � �

�

�
q

�
q

�
q

� �� ��
q

�
q�

q
�

�
�� � �

q�
�

q
�

�
�

�

�
�

�

q

�

�

� �� ��
q

�
q

�
q

�

�� �
q

���
q

�

q

�
q
�� ��

�
�

q
�

�

q

� ��
�

�
q

� ��
�

��

�

�

�
q

��

�

�
q

�
�

�
q

�
q

�
�

�
� �

�
�

��
�
� �

�
�

q

�
q�

�
q

�

�

� ��

q

��
q

�
�

�

�

�
�

� ��
q� �

� �
q

�

� �
q

��
��

�
q

� �

�

� �� �
q

�
q

��
q

���� �
q

�
q

�

q�
� ��

q�� ���

� ��
�

�
q

��

��

� �
q

� �

��

� ��
q

�
q�

�
��

� ��
�

�
q

�� �
�

�

q

�� �
q�

�
q

�
���

�
�

q
�� � �

�
��

q
�

q
���

���
q

��
q

�

�

�
q

� ��
q

�� �
q

��
�� �

q�

�
q

�

� �� �
q

�
�

q�
�

��

q

� �

q

� ��� � �
q

�

��
�
� �

�
� �

q
�

q
�

� �� � �
q� �

q
��

q

��
���

�
��
� �

q
����

� �
�

��
q

��
�

�
q�

� �
q

�

���

�
��

��

�

� �
q

�
q� � �

�
�

q
�

�

�
q

�
q

�

�
� ��

�
����

�
�

�
q

�

q
�

��
�

� �

�

��

��
�

�

q

� �
q

�
q

�
q

� �
��

�

��

�
�

�
�

�

�

�
q

�� �
q�

� � ��
�

�

q

�
q�

� � � �

�
�� ��

��

��

�� �

q
�

�
���

��
� �
�

�
q

�
�

�
�

q
�

q
� �

q�

�� �
q

�
�

��
�

� �

�

�
�

�
� ���

��

�

�
q�

�
q

��
q�

� �
q

�

�

�
q

�
q�

� �

q

�

q

�

�

�

�
�

�
q

� ��� � ���
q

��
�

��
q

�
�

� �
q�

�
q

�
q

�
q

���
q

��

�� �
�

�
��

� �
q

�
� �

� �

�

�

�
�

��� �� �� �
q

�
�
��

�
q

�
q

�
�

� ��
q� �

�

�

�
q

��
q��

�

�

�

�

� �
q

�
�

�

��

�

��

� � ��

�
�

�

� ���
q

� � ��

q
�

� � �
��
� �

q
��

�
��
�

�
�

� �
q

��
�

� � � ��

�
��

�
� ���

q

� ��
�

�
�

��
�

�
�

��
q

� �
�

�

� �� ��
�

q
�� � ��

�
�

�
q

� ��
q

��
q

�
q

�� ��
�

�

�

� �
q

�
q

��
q�

�
�

q

� ��

�

�
q���

�
�

��

�
q

�

q
�

�

�

q

�
q

� ��

q

�

q
�

��
q��

�

q

�

�

�
q�

�

��
�

�
�

�
q

�

� �
q

�
q

��

�
�

�
� �

q� �
�
�

��
�

�
q

��

��
q

�� �
�

�
q

� �
q

�
q

�
� � �

� ��
�

q
��

�

��
�

�

q

�� �
q

��
q

�
q

� ����� �
�

�� �
q

� �
q

� ���� �

��

�
q�

��
�

� �
q

��
�

q
� �

q�
�

q
�

�

�
�

��
��� �

q
�

q
�

���
��� �

q

�� ��
q

�

q

��
q

�
q

� � �

q�
��

� ��
q

�
q

��� ��
q

��
� �

�

��
q��

��
q

�
q

� �
q�

�
�

q

�
q

��
�

�

�

�� �
�

�
�

��
�
�

�
� �� � � �� �

�
�

��
q

�
q

��
q

� � ��
q

�
q

�
q

� �
�

� ��
�

�
�

� � ��

q

�
q

� �
q

�
�

�

q
�

�
q

��
q��

� � �
�

�
q

�
� �

q��
�� ��

q
�

�
�

�
q

�
q

�

�

��
�

�
q�

�
� � �
��

��� �
q

�
�

q
�

q
�

�

�

q

�
q

��
q

��

q

��
�
� �

q

����

�
�

� �� �
� �� ��

��
�

q

�
q�

�� �
q

�
�

�
q

�� �

�

��
q

��� �
q

� �
q

��
� �� �

q

�
q

�
�

��

� �

�
q

�

�
�

�
���

�
�

�
�

q
�

q
�

�

�
q

�
q

�����
�

q
�� �

q
���

�
�

q
� �� �

�
��� ��

q
� ��

�

�
q

�
q

�
��

� �
��

�

�

� �
q

� �
�

�
q

�
���

�� �

q�

�
�

��

�

q
�� �

q
�

�

�

�

q
� �� �

q�
�

���

� �
q

�
�

�
��

� �
q

� �
�

��
�

�
q

� ���
q

�
q�

�
q

�
q

���
�� �

q
� ��

q
���

� ��
q

� �
q

�
�

q
�

q
�

q�
�

�
�

�

���
�

� �

�� �
�

q
�
�

�
q

�
q

��
q

�

�
q

�
q

�
�

� �
q

�

q
�

�
q

�
q��

��
�

� ��� �
�

�

�
���

�
�
�

�� ���� �

�
� �

q
�

q

� �

q

�

�
�

��

�

�
�

�� ��� �
�

��
��

�
�

�

� �

�
� �

��

�

q

�
q

�
�

��
�

�
q

�
�

�

�

� �

�
� ��� � � �

��

�

q

�
q�

� � ��
�

�

q

�

�

�
�

� �

�
q

�
��

�

q

�
q

�
�

��
� � �
�

� �� ��
q

��
�

� �
q

� �� �

��
� �

q�
� �

q
�

�
��

q�
� � �

�
� �

q

�
q

� ��
q

�
��

�

� �

� �
�� � ��

q
� �� �� �

� �
�
�

�
q�

��
q

��

q

����
q

�
��

�� � �

q

�
q��

���
q

�
�

�
�

��
�

�
q

�
q

�
���

��
��

��
�

��
q

�

��
q

�
��

�
��
q

� ��
q

�
q

� �

�

���
q

��
�

� �
q

�

�

� ���
�

�
�

�� �
q

�� ��
�

�

q
�

�
q

��
q

�

�

�
q

�
�

�
q

� � �
�

��� � �� �� �

q
� ��

q

�� �
�

�
q

� ��

q

�� �
q

�� �

�

�� �
��

q
���

�
� � �

�
�

� � ��
q�

�
�

�

�
�
� �

� �
q

��
q

��

q

��
q

� � ��

�

��
q ��

q
�

�

�

�
�
�

�

���

�

� �� ��
q�

� ��

�

�
q�

� �
�

�

�
q

���
q

�
q

��� �

�

� � �

q

�
q

�
q

�

q
� � ��� ��

q
��

q
�� ��

q��

� � �
q

��

�

�� ��

�

�
�

�� �

�
�

���
�

��
q

�
�� � �

��
��

q
�� �

q
�

q
���

q
�

q

��
q

�

��

�
q

�
q

�

�

�
q�

�
q

�

� � ���

q

�
q��

�
q

�� ��
q

�
q�

�
q�

�
q

� � ���
q

� �� �
q

�
�� �

q
�� � �

q�
� ��

q
�

� �
q�

�
���

q
� ��

q
�

q
�

q�

�

q

�
q��

�

���
�

�

q
�

�

�

�

q

� �
q

�
�

�
q

�
�

���
q

�
q

�
q

� �

��

�
q

�
q

� �
�

� �
q�

q�
��

q
�

q
��� � ��

�
��

�
�

�

�

�
q� �� �

q

�
q

� �
q

� �

�

�
q

� �� �

�

�
q�

� �� ��
q

�
�

�
q

� �
q

�

��

�

� �
��

�� ��� ��

����

�� �

�

�
�

�

�

� �
q

�
��

�
q

�

q

�

q

�
q�

� � �
�

���
q

� ��
�

�� �

�

�
�� � ��� � ��

�
�

q
�

�

� �
q

��
q

�
���

�

�

���

���
�

�� �
q� �

�
q

�
�� �

���
q�

q
� �

q
�

�
q

�

q

�

�

�
q��

�
q

�
q

�
q

�� �

�

�

q

�
q

�
�

�
q

�
q
��
q

�
q

�
q

� �� �
�

� �

� �
�

�

q�
�

q

� �
q�

�
�

�

q

�
q

�
q

�

���
q

�
q

�� �
q

� � �� ��
�� �

�

�

�
q�

�
� ��

q
�

�

q

�
q

�
q

� �
q

�
�

�
� � ����

q
�� ���

�� ��
��

� �
�

�

�
�

��
q

�� � �
q

�
�

� ��
q

���
�

� ���
�

� �� �

�

�
q

� �
q

�
q

�
q

�
� �� �

�
�

��

��� ���

�

�

�
q

��
�

�

q�

� �

����
� �

q
� ��

�

� ��
q

�

�

�

�

�
�

���
q

���
q

�
q

� ��

q

�
q

� ���
q

�

q

��
q

�
�

q

���
�

�
q

�
q

�

���
��

q

��
��

�

�

�
q

�
�

q

�� �
�

�
q�� �

��

�
q�

�
q

�

�
q

�
q�

�
�

� �
�

�

�

�

q

��

�

�
q

�

�

�

�
�

���� �� � ��

�

�
��

� ��
��

�
q

�
q

�
� � �

q�
�

�
�

q
�

q
��

�
�

q

� �
� �

�
��

��
q

����
��

� �� �� �
q

�

��

��
q

���

� ��
� �

���
�

q
��

q
��

q
�� �

q
�� � �

q
��

q

�
q

�
q

�
� �

�
q��

� � �
q�

�
����

�

�

�
q����

�
�

�
q

� � �
�

�
q

�
q

� � �
q

�

�

� �
� �

�
q�� � ���

�
q�

�

�
q

��

���� �
�
�

��
q��

���
�

��
�

���
�

q
�� ���

�

� � ��

q�

�
�

�
q��

��

�

�
q�

�
�

� � ��

q

�
q

��� ��

q

�

�

��

q

� �
� �

�
� � �

q
�

�
� ��

q�
�� �

q
� �

�

��� �
q

���
q

� �� �
q

� ��
q

� ���
q

�
q�

���

��

� � �

�
��

�
q

� �
q

��
��

��

q

� ��
� �

�
� �

��

�

�

��

���
�

�
q

� �

q

�
q

�
q

�
q

� �
�
�
�

��
� � ��

�

�
q

�

�

�

�
�

�
q

� � �

�

�
q�

�
q

�� �

q
�

�� �
�

� �
q�

�
q

�
q

�
�

�
q

� �
�

�

�
�� �� ��

q
��

�
��

�

�� �
q

�� �
��

q�
��

��
�
�

�
q

�

� �

q

��
q�

�
��

�

�
q

�
q

�
q

��
q

��� ���
�

��
q

�
q�

� �� ��
� �

q

� �

�
�

�

��

��
�

�
q

�� �

q��

�

�
� �

q
� �

q
�

q
�

�
q

�
q

�
q

�
�

� �

��

��
q

�

q

��
q

� �
q

�

�

�� �
q

��
���

�
q

�
�

��

�� ��
q

�

q

�� �
q

��
q�

�
q

� ��

q

�
q

�
�

�

�

�� � ��
q

�
��

q��

� �

�

� �� ���� ��
q

� ��
�

�
�

��
�

�
q

��
�

�
q

�
q

�
q� �

�
�

��

q

�
q

�

�

��
q

� �
q

�
q

� �

q

�
q

�
q

����

��

�
q

�

�
�
� �

q
�

�
� ��

q��
�

�
� �

�
�

q
� �

q
�

q
� �

�

�
�

�

�

��
�

� ��

q

�
q

��

q
�

q� �� ��
�

�

�
�

� ���

q
��

� �
��
�

�
q

�
� ��

q
�

q
�

q
� ���

�

�
q

� � �
q�

�
q

�
�

�
�

�
q

�
�

��
q�

�

�
q�

���
�

q
�

��
q�

�

�

�

�
��

�
�

�
q

�
��

�� � ��

��
��

�

q

�
q

�
q

�
q

�
q

��
q

�
q

�
�

� ��� �

�
�

� �
q

�

q
�

� ���
�

� �� �� ���

��
�

�
q

��� � �
q

�
q

���
q

�
�

�� �
q�

� ��
q

� � �
�

�

�

�

�� �
q

�
q

�
q

�
q

�� � �

q
�

�
�

��
q

�� ��� �
��

��

q
�

�

q
�� � ��

q�
�

�� �� �
q

�

�

�
�

� ����

�

�
q

�
q

�
q

�� � ��
q��

�
�� �

� �

�

�
�

��
q

�
q

��
q

� �

� ��

�

q

��
�

��

q

� ��
q

�
q

�
�

� �

�
� � ��
�

� �
q��

�
�

�

q

��� �

�

�

q

� ��
q�

�

� �

�� � �

��

�
q

��

q
�

q

� �
�

� ��
q

�
q

�� �
q

�

q

��
q

�
q

�
� �

�
q

�� �
q

�
q��

����
�

� �
�

�
q

� ��
� �

�
�

�� � ��
q

� ��
q

�
q

�
q

�
q

��
q

�
q

� � �

�
�
�

�
q

�
�

�
q

�

q

��
��
� � � ��

q
�

�

�
q

� ��

���

���
q

��
q�

���� ���
�

�� �

�
�

�
�

� ��
q

��� �
q

��
q

�
�

��� �
q

� � �����
�

�
� �

�

�� ��

�
�

�
q�

�
�

��

�
q

�

� �� ��
q

� �
q

� �
q

�
q

�
q

�
q

��

�
�

� �
q

�
q

� �
�

�
�

��
q� �

�
q

� � �
�

�

� � ��
q

�� ��
q

� � �
q

��

�

�
�

�
q

�

q
�

�� ��
�

� �
��

�

q

�
q

� �
�� �� ��

q

�
q�

�
�
� � �

�

�
�

�

�

�
�� �� ��
��
�

�
��

� �

�
�

q

�

q
�

� �
q

�
q

�
q

�

�
�

�

� ���
q

�
q

�
� �

q
��

�
�

� �
��

� ��
��

�
�

�
�
�

�

��
�

�
�

�� �� �
q

�

�
� �

q�
� � �

q
�� �

�
�

��
� �

q
�

���
�

�

��

�

�

�

�
�

�
���

��
�

�
�

q
�� � �

q�
�� �

�
�

q� � �� �

�
�

q
�

q

� �
�

�� �

q

�
q

���� � �

�

�

�

��� ��
q

� ���
q

� �� �
�

�� ��
q

�
q

�

q
�

� ��� �
q

��
q�

�
q
���

q
�� �

q
�

�
� ��

��
��

�� �

�

��

�
�

�
q

�
q

��
�� ��

q

�
�

���
�

q�
�

�

� ��

�

��

�

�� �

q

�
q

�� �� �
q

�
q� �

�

� ���
q

�
��� �
� �

�
�

�

��

� �� ��
q�
��

�
� �

�
�

�
�

� � �
�

�� �
q

�
q�

�

��

��
q

��� � �
�

� �� �

q

�� �� �
q

�
q

�

�

�
q

��

��

�

q

� � �� �����
���

q
� �

q
�

��� ���
q

�

�� ��
q

� �
q

��
q

�
q

�

�
�

� ���
q

�
q

�
q

� �
q�

�

q
� �

q

�

��

�
q�

q�

�� � �� �� �
q

�

�
�

� ��
q

��
q

��
q

��
q

�

�

��

q

� �
q

�
��

�

� �
q�

���

�

�
q

��
q�

�
q

�
q

� �� �
q

� � �
q

��� �� �
�
��

�
q

�
q�

� ��
q

�
q

��
q

�
�

�
�

� �

q

����� � �

�

�
��

�

�

q
�

�
q

�
q

�
q

�
q�

�
q�

��
�

q
� ��

q

��

q

���
�

�
�

��
q

�
q�

�� � �
�

�
q

�� �
q

� �
q�

�
q

� ��

q

��
�

�
q��

�
�

�
q�

�
��

��
q

�

���

�

� �
�

�
q��

�
q

�� �
q�

�
�

��

��

��
q

�
� ��

�
� � �

q
��� �

�
�

q
��

�
� �

q

�

�
� �

q
� �� ��

q

�
q

FIG. 11: (Color) Longitudinal phase space after the phase rotation section.

C. Cooling Region

The cooling channel was designed to have a transverse beta function that is relatively

constant with position and has a magnitude of about 80 cm. One cell of the channel is shown

in Fig. 12. Most of the 150 cm magnetic cell length is taken up by two 50 cm long rf cavities.

The cavities have a frequency of 201.25 MHz and a gradient of 15.25 MV/m. A novel aspect

of this design comes from using the windows on the rf cavity as the cooling absorbers. This

is possible because the near-constant β function eliminates the need to place the absorbers

at a low-β point to prevent emittance heating. The window consists of a 1 cm thickness
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FIG. 12: (Color) Schematic of one cell of the cooling section.

of LiH with a 300 µm thick layer of Be on the side facing the rf cavity field and a 25 µm

thick layer of Be on the opposite side. The Be will, in turn, have a thin coating of TiN to

prevent multipactoring [19]. A 1 cm space might be introduced between the Be rf window

and LiH absorber with flowing He gas to cool both. The alternating 2.8 T solenoidal field

is produced with one solenoid per half cell, located between the rf cavities.

Figure 13 shows the longitudinal phase space of one muon sign at the end of the cooling

section. The reduction in normalized transverse emittance (ǫT ) along the cooling channel

is shown in the left plot of Fig. 14 and the right plot shows the normalized longitudinal

emittance (ǫL). The channel produces a final value of ǫT = 7.4 mm rad, which is more

FIG. 13: (Color) Longitudinal phase space at the end of the channel. Right: the vertical scale

expands from 0 to 400 MeV/c with 100 bins; the horizontal scale is from 20 to 60 m with 100 bins.

than a factor of two reduction from the initial value. The equilibrium value for a LiH

15



FIG. 14: (Color) Normalized transverse emittance (left) and longitudinal emittance (right) along

the front-end for a momentum cut 0.1 ≤ p ≤ 0.3 GeV/c.

absorber with an 80 cm β function is about 5.5 mm rad. Figure 15 shows the muons per

incident proton on target that fit into the accelerator transverse normalized acceptance of

AT = 30 mm rad and normalized longitudinal acceptance of AL = 150 mm. The 80-m-long

cooling channel raises this quantity by about a factor of 1.7. The current best value is

0.176± 0.006 muons per incident proton. This is the same value obtained in FS2. Thus, we

have achieved the identical performance at the entrance to the accelerator as FS2, but with

a significantly simpler, shorter, and presumably less expensive channel design (see Sec. VII).

In addition, unlike FS2, this channel transmits both signs of muons produced at the target.

With appropriate modifications to the transport line going into the storage ring and the

storage ring itself, this design could deliver both (time tagged) neutrinos and antineutrinos

to the detector. The beam at the end of the cooling section consists of a train of bunches

with a varying population of muons in each one; this is shown in Fig. 16 for one sign.

Figure 17 depicts the longitudinal phase space of the superposition of all bunches pro-

jected onto a single period (T ≈ 5 ns). We assume that particles outside the accelerator

acceptance are intercepted by collimators located in the matching section, although this

collimation system has not been designed yet. Approximately 60% of the beam leaving

the cooling channel is intercepted by the collimators. The heat load on the collimator is

7.3 kW. Fig. 18 shows a few interleaved µ+ and µ− bunches exiting the cooling section. The

opposite-sign bunches are mostly separated in time. There are a small number of wrong sign

particles in the bunch train after cooling, but these will be cleanly separated by the dipoles

16



FIG. 15: (Color) The muons per incident proton on target into the accelerator normalized trans-

verse acceptance of AT = 30 mm rad and normalized longitudinal acceptance of AL = 150 mm for

a momentum cut 0.1 ≤ p ≤ 0.3 GeV/c.
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FIG. 16: Bunch structure of the beam delivered to the accelerator normalized transverse acceptance

of AT = 30 mm rad and normalized longitudinal acceptance of AL = 150 mm for a momentum cut

0.1 ≤ p ≤ 0.3 GeV/c.

in the subsequent accelerators and storage ring.
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FIG. 17: Longitudinal phase space of overlayed bunches in the train at the end of the cooling

section. The open circles are all the particles that reach the end of the channel and the filled circles

are particles within the accelerator normalized transverse acceptance of AT = 30 mm rad and

normalized longitudinal acceptance of AL = 150 mm for a momentum cut 0.1 ≤ p ≤ 0.3 GeV/c.

D. Heating of Absorber Windows

There are some unresolved issues with the absorber windows that will require further

R&D. To minimize multiple scattering we have assumed the windows are made from LiH. In

order to protect the LiH from the environment and to provide a high conductivity surface to

close off the rf cavity, we have assumed the LiH is encased in a thin layer of Be. Assuming

that the Be can be bonded to the LiH, there is the question of what happens when the

window is heated by energy loss of the muon beam and by the power deposited by the

rf cavity. If the heating becomes high enough, melting and differential stresses leading

to buckling are possible. In addition the window could suffer degradation from radiation

damage.

Approximately 1.1×1014 muons of each charge enter the start of the cooling channel each

second. This produces a total power deposition of ≈ 58 W distributed along the beam path.

Most of the energy deposition takes place in the LiH. We assume that cooling is provided by

a heat sink at the outer edge of the window. If we ignore any longitudinal heat conduction
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FIG. 18: (Color) A sample from the train of interleaved µ+ (red) and µ− (blue) bunches exiting

the cooling section.

between the LiH and Be layers [20], the LiH reaches a maximum temperature of 310◦C in

steady state. This is safely below its melting temperature of 690◦C. The rf heating occurs in

a skin depth on the side of the window facing the cavity. The skin depth for Be at 201 MHz

is approximately 9 µm. The rf power deposited on the window of a pillbox rf cavity is

P =
π2

2

d

λ
E2

0

b2

Z0

{

J2
1 (α) − J0(α)J2(α)

}

(2)

where, d = skin depth, λ = rf wavelength, E0 = peak rf gradient, b = window radius, a =

radius of rf cavity (pillbox), Z0 = impedance of free space, and J0, J1, J2 are Bessel functions

with argument α = 2.405× b
a
. This gives a total rf power of ≈ 220 W in each window. Rough

calculations predict that the temperature at the center of the 300 µm thick Be layer should

be less than 175 ◦C. This is also safely below its melting temperature of 1275◦C.

Although melting will not be a problem, buckling and delamination of the Be layer is a

potential deleterious outcome. More accurate finite element thermal studies need to be done

of the composite LiH-Be system. In case this window design does not prove to be feasible, a

number of alternative absorber designs have been investigated. The window could be cooled
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FIG. 19: (Color) Potential layout for the acceleration systems.

by flowing He gas between the Be window and the LiH. The thermal conductivity to the

heat sink on the outer edge of the window can be improved by breaking up the LiH into

several pieces, separated by layers of high conductivity Be. Using a total thickness that gives

the same total energy loss as the original window results in only ≈ 3% loss in the accepted

muon flux. Other possibilities that gave reasonable muon fluxes are a thin Be layer on pure

lithium or thicker Be windows and no LiH, with a thickness chosen to make the total energy

loss the same as that in the baseline LiH absorber case. Cooling would be a bit less effective

because of the greater multiple scattering. An initial evaluation [18] of a Be-only scenario

showed less capture into the acceleration channel acceptance (≈15%). A scenario in which

Be absorbers are initially installed and then upgraded later to more efficient LiH absorbers

is, of course, also possible.

IV. ACCELERATION DESIGN

The acceleration system takes the beam from the end of the cooling channel and accel-

erates it to the energy required for the decay ring. Figure 19 shows a compact poten-

tial layout for all the acceleration systems described here. It includes five sub-systems: a

matching section, a linac, a Recirculating Linear Accelerator (RLA), and two Fixed-Field

Alternating-Gradient (FFAG) circular accelerators.

To reduce costs, the RLA acceleration systems from FS2 [1] will be replaced, as much as

possible, by Fixed-Field Alternating Gradient (FFAG) accelerators. FFAGs are rings that
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TABLE III: Acceleration system design parameters.

Injection momentum (MeV/c) 273

Initial kinetic energy (MeV) 187

Final total energy (GeV) 20

Normalized transverse acceptance (mm) 30

Normalized transverse emittance, rms (mm-rad) 3.84

Normalized longitudinal acceptance, ∆E∆t/mµc (mm) 150

Total energy spread, ∆E (MeV) ±45.8

Bunch length (ns) ±1.16

Energy spread, rms (MeV) 19.8

Bunch length, rms (ns) 0.501

Bunching frequency (MHz) 201.25

Maximum muons per bunch 1.1 × 1011

Muons per bunch train (each charge) 3.0 × 1012

Bunches in train 89

Average repetition rate (Hz) 15

Minimum time between pulses (ms) 20

Average beam power at the end (each charge) (kW) 144

accelerate a beam over a large energy range (generally at least a factor of 2) without varying

the magnets’ fields, allowing for very rapid acceleration. Since they are rings, the bunches

make multiple passes through the rf cavities, reducing the rf voltage required to accelerate.

The number of turns is not limited by the switchyard, as it is in an RLA. The original

FFAG designs [21] (“scaling” FFAGs) used large, highly nonlinear magnets. For our design,

we instead use so-called linear non-scaling FFAGs [22, 23]. These FFAGs use very linear

magnets to maximize the dynamic aperture (necessary for our large-emittance beams), and

the magnets generally have smaller apertures than those in a corresponding scaling FFAG

design, bringing down the machine cost.

Table III gives the design parameters of the acceleration system. Acceptance is defined

such that if A⊥ is the transverse acceptance and β⊥ is the beta function, then the maximum

particle displacement (of the particles we transmit) from the reference orbit is
√

β⊥A⊥mc/p,
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FIG. 20: (Color) Matching section from cooling to linac. Blue rectangles are solenoids, red lines

are rf cavity walls and dashed black lines are the windows of the cavities. The last three cavities

are superconducting, the remaining ones are room temperature.

where p is the particle’s total momentum, m is the particle’s rest mass, and c is the speed of

light. The acceleration system is able to accelerate bunch trains of both signs simultaneously.

A. Matching from Cooling to Acceleration Linac

The cooling section has a beta function of around 0.8 m, whereas the beginning of the

acceleration linac has a beta function of around 2.7 m. A matching section is required to

gradually change the beta functions from one section to the other so as to avoid emittance

growth and/or particle loss. Furthermore, the reduced acceptance of the longer cells in the

acceleration linac, as compared to the more compact cells of the cooling section, necessitates

that the acceleration linac start at an energy above that of the cooling section (see Table III);

the matching section will thus also begin to increase the beam energy after the cooling. That

matching section will consist of six cells similar to those in the cooling channel, but with

increasing lengths and numbers of cavities per cell, and three superconducting cells similar to
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TABLE IV: Linac cryomodule structure. Numbers are lengths in m.

Cryostat I Cryostat II Cryostat III

Drift 0.45 Drift 0.70 Drift 0.70

Solenoid 1.00 Solenoid 1.00 Solenoid 1.00

Drift 0.50 Drift 1.00 Drift 1.00

Cavity 0.75 Cavity 1.50 Cavity 1.50

Drift 0.30 Drift 0.80 Drift 1.50

Total 3.00 Total 5.00 Cavity 1.50

Drift 0.80

Total 8.00

the accelerating linac, but made shorter by the use of shorter, higher field focusing solenoids.

Figure 20 shows a layout of the matching section. The current design for the matching section

has about 15% loss; initial studies indicate that this may be due to performing the matching

at low instead of high amplitudes. Initial attempts at performing the longitudinal match

at high amplitudes have eliminated the losses longitudinally, but we have not yet done the

matching for the transverse plane as well.

B. Low Energy Acceleration

Based on preliminary cost considerations, we have chosen not to use FFAGs below 5 GeV

total energy. Therefore, we must provide alternative acceleration up to that point. Similarly

to what was adopted in FS2, we use a linac from the lowest energies to 1.5 GeV, followed

by a recirculating linear accelerator (RLA).

The linac parameters are strongly constrained by the transverse acceptance. In FS2 there

were three types of cryomodules, containing one, two, and four two-cell cavities, respectively.

Because of our larger acceptance requirements, the cryomodule-dimensions from FS2 would

require the beam to have a momentum of at least 420 MeV/c, 672 MeV/c, and 1783 MeV/c,

respectively. Note that the momentum for the first stage of the linac is, already, much higher

than the average momentum in the cooling channel, which is about 220 MeV/c. Thus, we

need to make adjustments to the FS2 design to be able to accelerate this larger beam.
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TABLE V: Linac cryomodule parameters.

Cryo I Cryo II Cryo III

Length (m) 3.00 5.00 8.00

Number of modules 12 18 22

Cells per cavity 1 2 2

Cavities per module 1 1 2

Maximum energy gain per cavity (MeV) 11.2 22.4 22.4

Cavity rf frequency (MHz) 201.25 201.25 201.25

Solenoid length (m) 1 1 1

Max Solenoid field (T) 1.5 1.8 4.0

In particular, to increase the acceptance, we must reduce the lengths of the cryomodules.

We first employ a very short cryomodule using a single one-cell cavity as opposed to the

two-cell cavities used in all of the FS2 cryomodules. Not only does this shorten the cavity

itself, it also eliminates one of the input couplers. We also eliminate some of the drift space

in the cryomodule. This is possible since we now consider it acceptable to run the cavities

with up to 0.1 T on them [24], provided the cavities are cooled down before the magnets are

powered. The field profile of the solenoids shown in FS2 indicates that the iron shield on

the solenoids is sufficient to bring the field down to that level, even immediately adjacent

to the solenoid shield. Together, these changes reduce the total length for the first module

type to only 3 m. Table IV shows the dimensions of the cryostats we will use and Fig. 21

depicts all three of them.

Table V summarizes parameters for the linac. The phases of the cavities in the linac will

be varied approximately linearly with length from about −73◦ at the beginning of the linac

to 0◦ at the end, as shown in Fig. 22.

C. RLAs

Compared with FS2, we are injecting into the RLA at a lower energy and are accelerating

over a much smaller energy range. These features make it more difficult to have a large

number of turns in the RLA. To mitigate this, we choose a dogbone layout for the RLA [25].
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FIG. 21: (Color) Layouts of superconducting linac pre-accelerator cryomodules. Blue lines are the

SC walls of the cavities, solenoid coils are indicated in red, and the iron shielding is in green. The

dimensions of the cryomodules are shown in Table IV, and Table V summarizes parameters for the

linac.

For a given amount of installed rf, the dogbone layout has twice the energy separation of

the racetrack layout at the spreaders and recombiners (see Fig. 24), making the switchyard

much easier and allowing more passes through the linac.

One disadvantage of the dogbone layout is that, because of the longer linac and the very

low injection energy, there is a significant phase shift of the reference particle with respect

to the cavity phases along the length of the linac in the first pass, relative to later passes. To

reduce this effect, we inject into the center of the linac as shown in Fig. 23. This injection

is accomplished with a chicane similar to that used for injection in FS2, but here, to inject

both signs, there are two chicanes, one on either side of the linac (see Fig. 25). The start

of the chicanes is the point at which the particles with differing charges are first separated.

To avoid this point overlapping the earlier part of the linac, the chicanes are tilted slightly

upwards.

In the dogbone RLA we have just over 1 GeV of linac, and we make three and a half
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FIG. 23: (Color) Dogbone (top) and racetrack (bottom) layout for the RLA.
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FIG. 26: (Color) Dogbone linac cell.

passes through that linac to accelerate from a total energy of 1.5 GeV to 5 GeV. The RLA

linac consists of 11 m long cells with two 2-cell cavities per cell, and quadrupole triplet

focusing, as shown in Fig. 26. The cavities are the 30 cm aperture cavities assumed in FS2,

as opposed to the 46 cm aperture cavities that were used in the linac that accelerated up to

1.5 GeV; this should permit a somewhat higher gradient (17 MV/m rather than 15 MV/m).

The arcs will also use quadrupole triplet focusing, with a 90◦ phase advance per cell

in both planes, in order to cancel some chromatic effects. Both the quadrupoles and the

dipoles in the arc and linac lattices will have 1 T maximum field at the coils, and can be

warm magnets.

Since the dogbone arc changes its direction of bend twice in each arc, dispersion matching

must be handled carefully. This is done straightforwardly by having a 90◦ phase advance per

cell, and removing the dipoles from two consecutive cells. This will cause the dispersion to

switch to the other sign as desired, as shown in Fig. 27. Matching of off-momentum particles

is controlled using sextupoles.

27



1 040

3
0

0
0

.3
-0

.3
β x 

, β
y (

m
) D

x  (m
)

β
x

D
x

β
y

FIG. 27: (Color) A section of the dogbone arc where the bend changes direction, showing the

dispersion (solid) and beta functions (dashed).

TABLE VI: Parameters for FFAG lattices. See Fig. 28 to understand the signs of the parameters.

Maximum energy gain per cavity (MeV) 7.5

Stored energy per cavity (J) 368

Cells without cavities 8

RF drift length (m) 2

Drift length between quadrupoles (m) 0.5

Initial total energy (GeV) 5 10

Final total energy (GeV) 10 20

Number of cells 90 105

Magnet type Defocusing Focusing Defocusing Focusing

Magnet length (m) 1.612338 1.065600 1.762347 1.275747

Reference orbit radius of curvature (m) 15.2740 -59.6174 18.4002 - 70.9958

Magnet center offset from reference orbit (mm) -1.573 7.667 1.148 8.745

Magnet aperture radius (cm) 14.0916 15.2628 10.3756 12.6256

Field on reference orbit (T) 1.63774 -0.41959 2.71917 -0.70474

Field gradient (T/m) -9.1883 8.1768 -15.4948 12.5874

D. FFAGs

Once we reach 5 GeV, it appears to be more cost-effective to use FFAGs rather than

RLAs. This conclusion is based on applying a procedure for producing minimum-cost FFAG

designs [26, 27] and comparing the resulting costs to those from FS2. FFAG designs for
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FIG. 28: (Color) Geometry of the Triplet Lattice. The “magnet center offset from reference orbit”

listed in Table VI is positive for both magnets in this diagram.

accelerating from 5 to 10 GeV and from 10 to 20 GeV are given in Table VI. The lattices

consist exclusively of combined-function triplet cells with a drift length sufficient to hold

a single-cell 201.25 MHz superconducting rf cavity (similar to the double-cell cavities from

FS2). The 2 m length of the drift is needed to keep the fields on the cavity under 0.1 T [24].

With the 1 MW beam intensity given in Table III, and both signs of muons, about 16% of

the stored energy will be extracted from the cavities in the 5–10 GeV FFAG, and about 27%

will be extracted in the 10–20 GeV. While this may seem substantial, it is easily handled.

To keep the average voltage sufficient to accelerate over the desired range, 7.5 MV, one need

only increase the initial voltage to 7.8 MV for the 5–10 GeV FFAG and to 8.1 MV for the

10–20 GeV FFAG. The most important effect is a differential acceleration between the head

and tail of the bunch train, which is only about 1% for both cases. This should be at least

partially correctable by a phase offset between the cavity and the bunch train and, in any

case, is substantially smaller than the energy spread in a single bunch.

One of the biggest challenges for the FFAGs is injection and extraction. Table VII gives

the parameters required for injection and extraction kickers. The stored energy in the kicker

is high, but is similar to that found in induction linac cells. The rise times and voltages are

also similar to those in induction linacs. These parameters assume that injection occurs from

the inside of the FFAG. This is preferred since the beam will be near the inside of the FFAG

at the lowest energies. Figures 29 and 30 show the 5 GeV injection and 10 GeV extraction

layout. The magnets near the kickers and septum must be modified to accommodate the

injection and extraction systems, but their effects will be kept as close as possible to those

of the other cells in the FFAG lattice to minimize the driving of resonances.
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TABLE VII: Parameters for FFAG injection and extracting kickers.

Energy (GeV) 5 10 10 20

Type Inject Extract Inject Extract

Length (m) 1.5 1.5 1.5 1.5

Kick field (T) 0.37 0.51 0.78 0.58

Maximum field at the coils (T) 3.6 2.6 4.2 5.6

Vertical aperture (cm) 10 10 7.6 7.6

Horizontal aperture (cm) 25 25 19.5 19.5

Current (kA) 44 60 71 53

Supply voltage (kV) ±58 ±60 ±52 ±48

Rise/fall time (ns) 640 950 875 1270

Pulse length (ns) 300 300 300 300

Stored energy (J) 850 1620 2280 1260
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FIG. 29: (Color) Injection into the FFAG. S1 to S4 are special injection region dipoles.
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E. FFAG Tracking Results

Initial experience with FFAG lattices having a linear midplane field profile has shown

them to have a good dynamic aperture at fixed energies. We are careful to avoid single-cell

linear resonances to prevent beam loss. However, since the tune is not constant, the single-

cell tune will pass through many nonlinear resonances. Nonlinearities in the magnetic field

due to end effects are capable of driving those nonlinear resonances, and we must be sure

that there is no beam loss and minimal emittance growth because of this. Furthermore,

there is the potential to weakly drive multi-cell linear resonances because the changing

energy makes subsequent cells appear slightly different from each other. These effects can

be studied through tracking.

ICOOL [15] is used for tracking for several reasons. It allows a fairly arbitrary end-field

description, it forces that description to be consistent with Maxwell’s equations, and it will

track accurately even when the lattice acceptances, beam sizes, and energy spread are all

large.

We begin by constructing a simple model of both a quadrupole and dipole cos θ-type
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FIG. 31: (Color) Relative dipole field (left) and quadrupole field (right) near the magnet end. The

dashed line is the field from TOSCA, while the solid line is our model.

magnet, without iron, using TOSCA [28]. At the end of the magnet, the field does not

immediately drop to zero, but falls gradually, as shown in Fig. 31. The end-field falloff in

a dipole or a quadrupole generates nonlinear fields, which ICOOL calculates. In addition,

there are higher-order multipoles generated by breaking the magnet symmetry at the ends

where the coils form closed loops. We use TOSCA to compute the sextupole components

that arise from this effect, as shown in Fig. 32, and include them in our computation.

The TOSCA computation is done without iron, which leads to the overshoot in the field

values in Figs. 31 and 32. Iron in the magnet will likely eliminate that overshoot. Thus, we

approximate the fields from TOSCA using functions without the overshoot. Fitting roughly

to the TOSCA results, the fields are approximated by

B0(z) =
1

2
B00

(

1 + tanh
z

0.7R

)

, B1(z) =
1

2
B10

(

1 + tanh
z

0.35R

)

B2(z) = −0.2B00 exp

[

−
1

2

(

z − 0.36R

0.57R

)2
]

,
(3)

where R is the magnet aperture radius, B0(z) is the dipole field, B00 is the dipole field in the

center of the magnet, B1 is the quadrupole field, B10 is the quadrupole field in the center

of the magnet, and B2 is the maximum magnitude of the sextupole field at the radius R.

These fitted functions are shown in red in their corresponding plots in Figs. 31 and 32.

Injecting particles at the outer edge of the acceptance and tracking through several cells

indicated a large third-order resonance at around 5.1 GeV/c, as shown in Fig. 33. This

resonance is presumably being driven by the sextupole fields at the magnet ends. With some

experimentation, it was found that if the integrated body sextupole was set to 68% of the
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FIG. 33: (Color) Horizontal phase space from tracking at 5.1 GeV/c at the outer edge of the

acceptance. Open circles are without the body sextupole fields and show a third-order resonance;

filled circles are with the body sextupole fields.

integrated end sextupoles, (see Fig. 34), the resonance was eliminated (also shown in Fig. 33).

When acceleration is included, one sees particle loss when accelerating through the resonance

if there is no body sextupole correcting the end sextupoles, while there appears to be almost

no loss with the body correction included (see Fig. 35). If the body correction is only partially
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FIG. 35: (Color) Tracking of a particle at the edge of the acceptance with uniform acceleration.

The dashed line is without any body sextupole, and the solid line is with the corrected body

sextupole.

included, there is significant emittance growth. With these sextupole corrections, we can

uniformly accelerate over the entire 5–10 GeV energy range without losing a high-amplitude

particle or having its amplitude grow by a large amount.

The 10–20 GeV FFAG should have qualitatively similar and quantitatively better per-
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FIG. 36: (Color) Longitudinal tracking starting from an upright ellipse for the 5–10 GeV FFAG.

On the left with only 201.25 MHz rf. On the right with third-harmonic rf having voltage equal to

2/9 of the fundamental rf voltage. Curves are labeled with their corresponding acceptance. Crosses

for both cases started out as horizontal and vertical lines in phase space.

formance when tracked since 1) the tune vs. energy profile of the machines is similar, 2) the

10–20 GeV machine has more cells than the 5–10 GeV machine, reducing the nonlinearities

arising from curvature effects, and 3) the ratio of aperture to length in the magnets is smaller

for the 10–20 GeV machine, reducing the relative contribution of the magnet end fields.

When tracking with rf is considered, the longitudinal dynamics is complex [29]. If one

begins with an upright ellipse, there is considerable emittance growth if only the 201.25 MHz

rf is used (see left plot in Fig. 36). Adding a third-harmonic rf considerably reduces the

emittance growth, as shown in right plot in Fig. 36. The amount of third-harmonic rf

required is substantial and that, combined with space considerations, makes this alternative

unattractive. An alternative that includes tilting the initial ellipse in phase space, which

also reduces the emittance growth, is being studied.

F. Design of Combined-Function Superconducting Magnet for FFAGs

An initial design of a superconducting combined-function (dipole–quadrupole) magnet

has been developed [30]. The work has been done for the defocusing magnet from the above

design. The parameters of this QD combined-function magnet are shown in Table VIII.

The magnet design is based on a cosine-theta configuration with two double layers for

each function. A cross section for one quadrant is shown in Fig. 37. The quadrupole coil is

located within the dipole coil and both coils are assembled using key-and-bladder technology.
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TABLE VIII: Parameters of the QD magnet: L0 is the length of the long drift between the QF

magnets; Lq is the length of the short drift between QF and QD magnets; X0 is the displacement

of the center of the magnet from the reference orbit (see Fig. 28); B0 is the vertical magnetic field

at the reference orbit, and B1 is the derivative of the vertical magnetic field at the reference orbit.

Initial energy, Emin (GeV) 10

Final energy, Emax (GeV) 20

Long drift, L0 (m) 2

Short drift, Lq (m) 0.5

Type of magnet QD

Length of reference orbit, L (m) 1.762

Radius of curvature, r (m) 18.4

Displacement, X0 (mm) 1.148

Radius of the magnet bore, R (cm) 10.3756

Vertical magnetic field, B0 (T) 2.7192

Gradient, B1 (T/m) -15.495

All coils are made with the same Nb–Ti cable capable of generating the operating dipole

field and gradient with about the same current of 1800 A. A single power supply is thus

possible with a bit of fine tuning. The maximum central dipole field and gradient at short

sample are 4.1 T and 26 T/m, as compared with the requirements of 2.7 T and 15.4 T/m,

respectively. At this early design stage, excess margin is left for safety and perhaps a field

rise in the magnet end region. The maximum azimuthal forces required for magnet pre-stress

are of the order of 1 MN/m (assuming maximum safety). The conductor strand size and

cable parameters common to both dipole and quadrupole are listed in Table IX.

The initial cross sections of both dipole and quadrupole were designed to give less than

0.01 units of systematic multipole errors at a radius of 70 mm. It is straightforward to

readjust the design to cancel the end-field multipoles.

An alternative concept would be to use a single dipole-like design with laterally displaced

poles (see Fig. 38) as discussed in Refs. [31, 32, 33].
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TABLE IX: Nb–Ti conductor for dipole and quadrupole coils.

Strand diameter (mm) 0.6477

Cable width, bare (mm) 6.4

Cable thickness, insulated (mm) 1.35

Keystone angle (deg.) 0.6814

Conductor type Nb–Ti

Cu:SC ratio 1.8:1

Current density (at 5 T, 4.2 K) (A/mm2) 2850

Number of strands 20

FIG. 37: First quadrant of the combined-function magnet cross section.

V. MUON STORAGE RING AND PERFORMANCE

The storage ring in this study is assumed to be essentially identical to that in FS2.

However, injection will be required in two opposite directions for the two differing signs. The

injection lines must be designed such that when the train of one sign is traveling towards

the detector, the train of the other sign is moving away from the detector. In this way the
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FIG. 38: Expanded view of the cross section of the superconducting combined function magnet

used in the 50 GeV proton beamline for the J-PARC neutrino experiment [31].

neutrinos of opposite kind arrive at well separated times, and the experiment can analyze

their reactions separately. Another difference is that in this study, both straight sections

must be designed with very high betas, so that the neutrino beams of both types are well

collimated. Finally, it must be noted that the total energy deposited in the ring is doubled

by the presence of equally intense muon beams, but now of two signs.

Losses are summarized in table X. We define η to be the probability that a muon makes

it successfully into the storage ring. The number of decays Nµ, of each sign, injected into

the storage ring in a 107 second year is given by:

Nµ = 107 f Np µ/p η ≈ 107
× 15 × (17 × 1012) × 0.17 × 0.67 ≈ 2.9 × 1020.

We define ηstraight to be the length of the straight section pointing to the detector divided

by the circumference of the storage ring. The number of decays Nν , of both signs, in the

storage ring, decaying towards the detector, in a 107 second year is given by:

Nν = 2 Nµ ηstraight ≈ 2 × 2.9 × 1020
× 0.35 ≈ 2.0 × 1020.

This is a factor of two greater than that reported in FS2. Note that if the proton driver

power could be raised to 5 MW (4 MW has been discussed in a further upgrade of the BNL

AGS), then the number of neutrinos per year would match the high performance goal (1021)

suggested at the first NuFact Workshop in Lyon, France [34].
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TABLE X: Particle losses from cooling to storage ring

loss %

Match into linac 15

Linac 6.0

RLA 6.1

FFAG 1 5.1

FFAG 2 6.5

Total losses 33

VI. REQUIRED R&D

As should be clear from the design descriptions, the muon-based Neutrino Factory is a

demanding project. The machine makes use of novel components and techniques that are,

in some cases, at or beyond the state of the art. For this reason, it is critical that R&D

efforts to study these matters be carried out.

Each of the major systems has significant issues that must be addressed by R&D activ-

ities [5]. Component specifications need to be verified. For example, the cooling channel

assumes a normal conducting rf (NCRF) cavity gradient of 15 MV/m at 201.25 MHz in

substantial magnetic fields. Observations of breakdown in 805 MHz cavities have shown [35]

serious reductions of attained rf gradients when the cavity is operated in a field. It is not

clear how to scale these observations to the 201.25 MHz case, so experimental tests are ur-

gently needed. If the required gradients cannot be achieved in the specified magnetic fields,

then significant redesign will be needed.

The acceleration section demands high gradients from superconducting rf (SCRF) cavities

at this frequency; our requirements are somewhat beyond the performance reached to date

for cavities in this frequency range [36].

Development and testing of efficient high-power rf sources at a frequency near 200 MHz

is also needed.

The ability of the target to withstand a proton beam power at 1 MW and above must

be confirmed.

Finally, an ionization cooling experiment should be undertaken to validate the implemen-
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tation and performance of the cooling channel, and to confirm that our simulations of the

cooling process are accurate.

VII. COST ESTIMATE: ASSUMPTIONS AND ALGORITHM

For this study (ST2B) substantial effort has been directed at simplifying the design and

thus hopefully reducing the costs of three major components of a neutrino factory: phase

rotation, cooling, and the higher energy part of the muon acceleration. A preliminary

comparison with FS2, which contained detailed cost estimates with significant engineering

input, shows that a great deal of progress has been achieved. Starting from the FS2 work

breakdown schedule, we derived element costs per unit length, integral rf voltage, or net

acceleration. For all but the final FFAG acceleration, these costs were then applied to the

ST2B parameters after scaling for magnetic fields, radii, stored energy, rf gradient, etc. For

the FFAG costs a new cost algorithm had to be developed [27]. Further details on the costing

algorithms and their application to this new design can be found in a recent reference [37].

There are a number of reasons why we believe this new design should be significantly

less expensive than the previous one described in FS2. For phase rotation we have replaced

260 m of expensive induction linacs with 54 m of more conventional rf cavities. The 108 m

long cooling channel in FS2 was replaced with an 80 m channel. The new cooling channel

uses a simplified magnetic lattice with reduced peak solenoid fields; it also replaces liquid

hydrogen absorbers with solid LiH absorbers. For acceleration to 20 GeV we have made use

of recent advances in the development of non-scaling FFAG accelerators to replace most of

the recirculating linear accelerator used in FS2. There are of course some changes in the

new design, such as the adopted increase in transverse acceptance in the accelerators, which

will increase the costs over FS2. However, our examination shows that the design changes

should lead to an overall reduction in costs.

A summary of the preliminary estimates for the percentage cost reductions for the ST2B

neutrino factory design is presented in Table XI. It is most likely that a proton driver

will first be built in conjunction with a neutrino super-beam experiment, so we begin the

neutrino factory systems with the target and capture section. Excluding the proton driver

the new design should cost ≈ 35% less than the FS2 design.
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TABLE XI: Preliminary cost comparison between FS2 and ST2B.

System Reduced Cost %

Target, capture, 18 m drift 98

Bunching and Phase Rotation 39

Cooling 60

Acceleration 77

Ring 100

Total without driver & controls 65

VIII. SUMMARY

A new type of facility has been proposed that could have a tremendous impact on future

neutrino experiments—the Neutrino Factory. In contrast to conventional muon neutrino

beams, the Neutrino Factory would provide a source of electron neutrinos (νe) and antineu-

trinos (ν̄e) with very low systematic uncertainties on the beam fluxes and spectra. The

experimental signature for νe → νµ transitions is extremely clean, with very low background

rates. Hence, Neutrino Factories would enable very sensitive oscillation measurements to be

made.

A substantial Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere

over the last few years, and significant progress has been made towards optimizing the design,

developing and testing the required accelerator components, and significantly reducing the

cost.

The novel facility described here represents a significant improvement over previous de-

signs. New ideas in bunching, phase rotation, and ionization cooling have been incorporated

into the design of the front end, which now captures both muon signs simultaneously. The

non-scaling FFAG acceleration concept has been further developed and used for accelerating

the muons up to the 20 GeV design energy. The performance of the new system equals that

of the earlier FS2, for each of two neutrino states (ν and ν̄) that are generated essentially

simultaneously. The performance is thus effectively twice that of FS2. At the same time,

the facility is simpler than that in FS2 and of the order of 35% less costly.

R&D is also continuing to confirm needed component performance and establish the phys-
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ical concepts used. Continued optimization is ongoing, and is expected to further improve

performance and reduce the cost.
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